Monte Carlo Methods and Path-Generation techniques for Pricing Multi-asset Path-dependent Options
نویسنده
چکیده
We consider the problem of pricing path-dependent options on a basket of underlying assets using simulations. As an example we develop our studies using Asian options. Asian options are derivative contracts in which the underlying variable is the average price of given assets sampled over a period of time. Due to this structure, Asian options display a lower volatility and are therefore cheaper than their standard European counterparts. This paper is a survey of some recent enhancements to improve efficiency when pricing Asian options by Monte Carlo simulation in the Black-Scholes model. We analyze the dynamics with constant and time-dependent volatilities of the underlying asset returns. We present a comparison between the precision of the standard Monte Carlo method (MC) and the stratified Latin Hypercube Sampling (LHS). In particular, we discuss the use of low-discrepancy sequences, also known as Quasi-Monte Carlo method (QMC), and a randomized version of these sequences, known as Randomized Quasi Monte Carlo (RQMC). The latter has proven to be a useful variance reduction technique for both problems of up to 20 dimensions and for very high dimensions. Moreover, we present and test a new path generation approach based on a Kronecker product approximation (KPA) in the case of time-dependent volatilities. KPA proves to be a fast generation technique and reduces the computational cost of the simulation procedure.
منابع مشابه
Pricing and Hedging Asian Basket Options with Quasi-Monte Carlo Simulations
In this article we consider the problem of pricing and hedging high-dimensional Asian basket options by Quasi-Monte Carlo simulation. We assume a Black-Scholes market with time-dependent volatilities and show how to compute the deltas by the aid of the Malliavin Calculus, extending the procedure employed by Montero and Kohatsu-Higa [1]. Efficient path-generation algorithms, such as Linear Trans...
متن کاملPricing Asian Options: a Comparison of Analytical and Monte Carlo Methods
Asian options paying the excess over strike, of either the arithmetic or geometric average of the asset price over either discrete or continuous time, are valued using analytical and simulation methodologies. Expressions are developed for the double Laplace transform of the continuous arithmetic Asian option in both its strike and maturity. Analytical option prices for the continuous arithmetic...
متن کاملApplication of Monte Carlo Simulation in the Assessment of European Call Options
In this paper, the pricing of a European call option on the underlying asset is performed by using a Monte Carlo method, one of the powerful simulation methods, where the price development of the asset is simulated and value of the claim is computed in terms of an expected value. The proposed approach, applied in Monte Carlo simulation, is based on the Black-Scholes equation which generally def...
متن کاملDirichlet Bridge Sampling for the Variance Gamma Process: Pricing Path-Dependent Options
T authors develop a new Monte Carlo-based method for pricing path-dependent options under the variance gamma (VG) model. The gamma bridge sampling method proposed by Avramidis et al. (Avramidis, A. N., P. L’Ecuyer, P. A. Tremblay. 2003. Efficient simulation of gamma and variance-gamma processes. Proc. 2003 Winter Simulation Conf. IEEE Press, Piscataway, NJ, 319–326) and Ribeiro and Webber (Ribe...
متن کاملAddressing the bias in Monte Carlo pricing of multi-asset options with multiple barriers through discrete sampling
An efficient conditioning technique, the so-called Brownian Bridge simulation, has previously been applied to eliminate pricing bias that arises in applications of the standard discrete-time Monte Carlo method to evaluate options written on the continuous-time extrema of an underlying asset. It is based on the simple and easy to implement analytic formulas for the distribution of one-dimensiona...
متن کامل